
Built with Apache Forrest
http://forrest.apache.org/

Architecture Concept

Table of contents

1 Preliminaries... 2

 1.1 Sending/Receiving...2

 1.2 Learning...2

2 Main Concept..2

 2.1 The Sender.. 4

 2.1.1 Top level Interface...4

 2.1.2 Internal behavior.. 4

 2.2 The Listener.. 5

 2.2.1 Top level interface... 5

 2.2.2 Internal Behavior... 5

 2.3 The Dispatcher.. 5

 2.3.1 Top level interface... 5

3 Implementation notes..6

 3.1 Sender.. 6

 3.1.1 Drivers..6

 3.1.2 Protocol Renderer.. 6

 3.1.3 Remote/Command data base..6

 3.2 Listener.. 6

 3.2.1 Communication logic... 6

 3.2.2 Drivers..6

 3.2.3 Decoding.. 7

 3.3 Dispatcher..7

4 Comparision with Lirc (Lircd)... 7

http://forrest.apache.org/
http://forrest.apache.org/

Architecture Concept

Page 2Built with Apache Forrest
http://forrest.apache.org/

Date Description

2014-09-20 Initial version.

Table 1: Revision history

1 Preliminaries

1.1 Sending/Receiving

Traditionally, IR hardware and software combines sending and receiving capacities in
one unit — unless of course only one of these functinallities are supported. Instead, we
argue that sending and receiving of IR signals are fundamentally different activities
which preferrably are threaded separately. Of course, this does not prohibit a particular
implementation to implement both of these aspects, just like a program may contain both
a wordprocessor and a music player.

1.2 Learning

Capturing (often called "learning") should be taken out of the requirements. Capturing
and analyzing unknown signals is a completely different use case from (deployment)
sending and receiving of IT signals. There are other software, like the IrScrutinizer that
are optimized for this use case. Capturing of the signals of a present remote is done
during installation time, the result saved to a data base used by the sender and/or receiver.
(Alternatively, in very many cases, the IR signals for a particular device/remote can be
found in public or propritary data bases found on the Internet.).

2 Main Concept

A three-component model consisting of a sender, a receiver, and a dispatcher, as shown
in the figure below, is proposed. These should be designed as exchangable components.

http://forrest.apache.org/
http://forrest.apache.org/
Glossary.html#Capturing
IrScrutinizer.html

Architecture Concept

Page 3Built with Apache Forrest
http://forrest.apache.org/

http://forrest.apache.org/
http://forrest.apache.org/

Architecture Concept

Page 4Built with Apache Forrest
http://forrest.apache.org/

2.1 The Sender

2.1.1 Top level Interface

The sender encapsulates sending of IR signals. It should be considered as a server,
communicating with its clients using the Girs command language. Basically, it is sent
commands to send particular IR signals through the IR hardware it commands. This
is specified in the Transmit module of Girs. With moderate effort, it would is also be
possible to implement the somewhat more limited protocol of the Lirc daemon Lircd.

The specification of the to-be sent IR signals can take place in three different ways:

• Raw IR sequence/signal; basically equivalent is the CCF, also called Pronto Hex,
format. This is simply a list of durations in microseconds of interleaved pulse and gap
durations.

• Protocol/Parameter format.
• Remote/Command format, this is simply the name of a remote or device, together

with the name of its commands.

It is possible that a particular implementation is not implementing all three forms, but just
one or two. However, leaving out the raw format is probably not productive.

2.1.2 Internal behavior

It is assumed that suitable hardware is connected to the computer running the sender.
Note that it is possible and sensible that a driver implemented on separate hardware (e.g.
an Arduino) also communicates using Girs.

A "low level send driver" accepts commands of sending a certain, raw, IR Sequences,
using a particular transmitter. A "high level driver" adds the capability to send an IR
signal consisting of an intro sequence, a repeat sequence, and (in some cases) an ending
sequence a certain number of times, as well as the possibility to interrup an ongoing
transmission of a repeating signal.

Timing issues are the sole responsibility of the driver layer. I.e., the upper layers deliver
sending requests to the driver, and the driver executes the requests. After a request has
been made, a stop request may however be issued (if the software implements it).

In the case of a raw transmission requested, the control logic directs the IR sequence or
the IR signal to the send driver.

If protocol/parameter form is implemented, the sender contains a protocol renderer
and possibly a data base of protocols, computing the raw signal corresponding to the
requested protocol/parameter combination.

If the remote/command format is implemented, the sender has to contain a data base,
like the LIRC configuration file(s). If the data base contains the already rendered signals,
these can be send directly to the driver. If a protocol renderer is implemented, it is also

http://forrest.apache.org/
http://forrest.apache.org/
Girs.html
Girs.html#Transmit
Glossary.html#Lircd
Glossary.html#RawIrSignal
Glossary.html#CCF
Glossary.html#IrProtocol
Glossary.html#RemoteCommandFormat
Glossary.html#Arduino
Girs.html
Glossary.html#IrSequence
Glossary.html#Transmitter
Glossary.html#IrSignal
Glossary.html#IrSignal
Glossary.html#Generating

Architecture Concept

Page 5Built with Apache Forrest
http://forrest.apache.org/

possible for the remote/command data base to contain protocol/parmeter data, which are
sent to the protocol renderer, which in its turn forwards it to the driver.

2.2 The Listener

2.2.1 Top level interface

The listener encapsulates the receiving and decoding of IR signals, and its translation into
an event or command response.

Often, a received and correctly identified IR signals is expected to generate an event of
some kind, for example a Linux input event. Alternatively/additionally, the listener can
implement a Girs server, and respond to Receive commands.

2.2.2 Internal Behavior

It is assumed that suitable hardware is connected to the computer running the listener.
Note that it is possible and sensible that a driver implemented on separate hardware (e.g.
an Arduino) also communicates using Girs.

The driver delivers its received signals as sequencies of pulses and gaps. This data is
delivered to a decoder, which decodes the sequences either as a protocol/parameters set,
or a remote/command set, analogusly with the sender, which was described above.

2.3 The Dispatcher

An IR system like Lirc not only sends IR signals and reacts on received IR signals, it
also invokes other actions, like starting programs etc., in the response to received IR
signals. Lirc even can act on other input events, as if they where received IR signals
(see the section below. Instead, we here advocate the separation of generating/receiving
IR signals and acting on them. The component for handling the events we will call the
dispatcher. Since the demarcation to general home/computer automation and remote
control is unclear, we will not go into any details.

2.3.1 Top level interface

The dispatcher can receive events and messages, not only from the IR sender and listener
here, but in the general case, also from other sources, like other sensors or input events.
From this input, it can generate other events, invoke other programs, send messages over
the network, etc.

http://forrest.apache.org/
http://forrest.apache.org/
Girs.html
Girs.html#Receive
Glossary.html#Arduino
Girs.html
Glossary.html#Decode

Architecture Concept

Page 6Built with Apache Forrest
http://forrest.apache.org/

3 Implementation notes

3.1 Sender

3.1.1 Drivers

There exists a number of "drivers" (or "plugins") for IR hardware for different programs.
Unfortunately, these are not always possible to use in another context. For example, the
Lirc dynamically loaded drivers are not meant to be used outside of Lirc, for example,
they do not implement a simple send of an IR sequence (instead there needs to be a
remote, and a command). To use these drivers (for the reason given, "plugin" is really
the better term), it will be necessary to create a "mini-Lirc" to support them. These are
by definition for Linux, or at least a Unix-like operating system. Also WinLirc and
Eventghost should be examined for its possiblity to "donate drivers".

Our package HarcHardware contains several Java drivers for IR hardware, that can be
used more or less directly.

3.1.2 Protocol Renderer

It is fairly straight-forward to write a simple renderer for a particular protocol, like NEC1
or RC5. A very advanced general and extensible renderer is IrpMaster, which is a GPL3
licensed Java program.

3.1.3 Remote/Command data base

A format is needed for importing (and possibly exporting) of IR signals. Another format
is needed for internally persistently storing the signals, for example to a disk file. These
formats may or may not coincide. As external import format, the Girr format is suggested,
or possibly a restriction thereof — for example a implementation without a protocol
renderer should require that all signals are present in either raw or Pronto Hex (CCF)
format.

For migration of Lirc configuration files, IrScrutinizer can be used.

3.2 Listener

3.2.1 Communication logic

It would be possible to implement a Lirc compatibility mode by writing on the Lirc
socket, typically /var/run/lirc/lircd. That way, Lirc "client programs" like
irexec, can be (re-)used.

3.2.2 Drivers

Many (most?) drivers for IR receiving hardware are not usable to receive general IR
signals (not even with "normal" and known modulating frequency). Instead, they try to

http://forrest.apache.org/
http://forrest.apache.org/
https://sourceforge.net/p/lirc/git/ci/master/tree/doc/html-source/driver-api.html?format=raw
Glossary.html#WinLirc
Glossary.html#Eventghost
HarcHardware.html
Glossary.html#IrpMaster
Glossary.html#Girr
Glossary.html#RawIrSignal
Glossary.html#CCF
Glossary.html#IrScrutinizer
http://www.lirc.org/html/irexec.html
Glossary.html#ModulationFrequency

Architecture Concept

Page 7Built with Apache Forrest
http://forrest.apache.org/

decode the signal itself, the react only on their "own" protocol, and in the case of a match
(and only then!), they deliver a decode, typically as an integer. In Lirc, these drivers are
called LIRCCODE drivers.

Typically, the hardware is not intended to be a "generic" component, but may be e.g. a
TV card with an IR receiver, just intended to react to a bundled hardware remote.

This type of driver does not fit into the model here. Instead, it may be possible to turn
such a driver into a "listener" in its own right, sending events ("received command 42
from the TV card") to a dispatcher.

Otherwise, the comments in the sender sections apply here too.

3.2.3 Decoding

Decoding can take place either protocol-oriented or command-oriented (trying to
determine which one of the know commands that fits). It is believed that the first one is
the more systematic, and normally the better approach, so we will only consider it here.

It is fairly straight-forward to write a decoder for a particular standard protocol, like
NEC1 and RC5. A very versatile decoder is DecodeIr, knowing over 100 different
protocols. It is widely used and tested. Unfortunately, partially due to its chaotic code
base, it is effectively not maintainable nor extendable, and its API also has some
problems.

3.3 Dispatcher

There are a number of possiblities to implement a dispatcher. The Lirc program irexec
is a simple such. I have also written a (presently not published) simple dispatcher in Java,
presently reacting on IR signals received from an Arduino, generating net events etc. as
configured from an XML file. The OpenRemote project contains a rule engine based on
Drools giving very interesting possibilities for elaborate "dispatching". For Windows
users, invoking Eventghost as dispatcher is also an interesting option. This program
allows the programming of e.g. if-then-else rules with simple graphic programming.
(When will this clever — Python! — program be ported to non-Windows?)

4 Comparision with Lirc (Lircd)

The daemon Lircd takes the role of all of the components sender, listener, and (to some
extent) dispatcher.

Lirc listens for sending requests either on a Unix domain socket (typically /var/
run/lirc/lircd), or a TCP socket (default 8765). Sending request can be
generated by a Lirc client like the command line program irsend. (Another
Lirc client, implemented in Java, is found in our HarcHardware package, in the
org.harctoolbox.harchardware.ir.LircClient. This is integerated in
IrScrutinizer.) A sending request contains a remote/command combination, together with

http://forrest.apache.org/
http://forrest.apache.org/
Glossary.html#Decode
Glossary.html#DecodeIR
http://lirc.org/html/irexec.html
http://openremote.org
http://www.drools.org
http://lirc.org/html/irsend.html
HarcHardware.html
IrScrutinizer.html

Architecture Concept

Page 8Built with Apache Forrest
http://forrest.apache.org/

a number of repetitions. It will use the data base ("configuration file") to render the IR
signal.

When a (reading) client opens the Lirc socket (the Unix domain socket or the TCP
socket), Lircd starts listening to IR signals. If a signal arrives, it is tried to decode it to any
of the known commands in its data base ("configuration file"). If decoding is successful,
the name of the identfied remote/command is written to the communication socket. Lircd
may also send events to another daemon (irexec) that can invoke other actions, like
starting certain programs or invoking other events, like X Window system events. It is
even possible to have Lircd injecting events into the Linux input layer.

Using the devinput driver and a /dev/input/eventN input device, any Linux
input device can be cloaked as an IR receiver. This may be an IR receiver with kernel (-
module) support (like the IguanaIR or a MCE receiver), but may also be a completely
different kind of animal. In this use case, The Linux kernel takes the role of our listener,
in some cases even explicitly decoding protocols such as NEC1 and RC5, while the Lircd
daemon is nothing else than a dispatcher.

http://forrest.apache.org/
http://forrest.apache.org/
http://lirc.org/html/irexec.html

	Table of contents
	1 Preliminaries
	1.1 Sending/Receiving
	1.2 Learning

	2 Main Concept
	2.1 The Sender
	2.1.1 Top level Interface
	2.1.2 Internal behavior

	2.2 The Listener
	2.2.1 Top level interface
	2.2.2 Internal Behavior

	2.3 The Dispatcher
	2.3.1 Top level interface

	3 Implementation notes
	3.1 Sender
	3.1.1 Drivers
	3.1.2 Protocol Renderer
	3.1.3 Remote/Command data base

	3.2 Listener
	3.2.1 Communication logic
	3.2.2 Drivers
	3.2.3 Decoding

	3.3 Dispatcher

	4 Comparision with Lirc (Lircd)

