
Built with Apache Forrest
http://forrest.apache.org/

IrpMaster: a program and API for the
generation of IR signals from IRP
notation

Table of contents

1 Revision history.. 3

2 Revision notes...3

3 Introduction...3

 3.1 Spelling, pronunciation..4

 3.2 Synergies within other projects...4

 3.3 Copyright and License.. 4

4 Main principles... 4

 4.1 Design principles...4

 4.2 Repetitions... 5

5 Command line usage.. 6

 5.1 Installing binaries.. 6

 5.2 Usage of the program from the command line... 6

 5.2.1 Preventing intro sequence in repeat sequence..9

 5.3 Iterating over input parameter ranges... 9

 5.4 Debugging possibilities... 10

 5.5 Third-party Java archives (jars).. 10

6 Extensions to, and deviation from, IRP semantic and syntax.................................... 11

 6.1 Parameter Specifications... 11

 6.2 The GeneralSpec... 11

 6.2.1 Persistency of variables..11

 6.2.2 Comments and line breaks...12

 6.2.3 Data types.. 12

http://forrest.apache.org/
http://forrest.apache.org/

IrpMaster: a program and API for the generation of IR signals from IRP notation

Page 2Built with Apache Forrest
http://forrest.apache.org/

 6.2.4 Extents..12

 6.2.5 Multiple definitions allowed.. 12

 6.2.6 Names...12

 6.2.7 GeneralSpecs, duty cycle... 13

 6.2.8 Namespaces..13

 6.2.9 Shift operators (not currently implemented).. 13

 6.2.10 Logical operators (also not implemented)..13

 6.2.11 BitCount Function.. 14

 6.3 Preprocessing and inheritance... 14

 6.3.1 Example... 14

 6.4 The Configuration file/IRP protocol database...15

 6.5 Syntax and semantics of the IrpProtocols.ini file..15

 6.6 Requirements for an IRP data base...16

 6.7 Integration with DecodeIR.. 16

7 The API...17

 7.1 Example of API usage.. 17

8 References...17

http://forrest.apache.org/
http://forrest.apache.org/

IrpMaster: a program and API for the generation of IR signals from IRP notation

Page 3Built with Apache Forrest
http://forrest.apache.org/

Note:

It may not be necessary to read this document. If your are looking for a user friendly GUI
program for generating IR signals etc, please try the program IrScrutinizer (or its predecessor
IrMaster), and get back here if (and only if) you want to know the detail on IR signal generation.

1 Revision history

Date Description

2011-08-15 Initial version.

2012-04-24 Converted to the document format of Apache
Forrest. The program documentation is now
generated from that file. Many minor fixes and
updates.

2012-06-03 Minor updates for upcoming release 0.2.0.

2012-08-19 Minor updates for upcoming release 0.2.1.

2012-11-18 Minor updates for upcoming release 0.2.2.

2014-01-27 Minor updates for upcoming release 1.0.0.

2014-05-30 Minor updates for upcoming release 1.0.1.

2016-04-29 Minor updates for release 1.2.

2 Revision notes

Release notes for the current version

3 Introduction

The "IRP notation" is a domain specific language for describing IR protocols, i.e. ways
of mapping a number of parameters to infrared signals. It is a very powerful, slightly
cryptic, way of describing IR protocols. In early 2010, Graham Dixon (mathdon in
the JP1-Forum) wrote a specification. Up until this program was released, there has
not been a usable implementation of the IRP-notation in the sense of a program that
takes an IRP Protocol together with parameter values, and produces an IR signal. (The
MakeHex program operates on a previous, more restricted version of the IRP notation.
The MakeLearned program has severe restrictions, most importantly, its sources are not
available.) The present work is a Java program/library that is hoped to fill that gap. It
is written in Java 1.6, may or may not run with Java 1.5, but definitely not with earlier
Java versions. It, optionally, calls the shared library DecodeIR on Windows, Linux,
or Macintosh, but has no other "impurities" in the sense of Java. It can be used as a
command line program, or it can be used through its API. For parsing the IRP-Notation,
the tool ANTLR is used, generating the parser automatically from the grammar.

http://forrest.apache.org/
http://forrest.apache.org/
IrScrutinizer.html
IrMaster.html
IrpMaster.releasenotes.txt
http://www.hifi-remote.com
http://www.hifi-remote.com/wiki/index.php?title=IRP_Notation
http://www.antlr.org

IrpMaster: a program and API for the generation of IR signals from IRP notation

Page 4Built with Apache Forrest
http://forrest.apache.org/

This project does not contain a graphical user interface (GUI). See Main principles for
a background. Instead, the accompanying program IrScrutinizer (and its predecessor
IrMaster) provides a GUI for the present program, among many other things.

For understanding this document, and the program, a basic understanding of IR protocol
is assumed. However, the program can be successfully used just by understanding that
an "IRP protocol" is a "program" in a particular "domain specific language" for turning a
number of parameters into an IR signal, and the present program is a compiler/interpreter
of that language. Some parts of this document requires more IRP knowledge, however.

3.1 Spelling, pronunciation

The mandatory section... :-; Preferred spelling is "IrpMaster", with "I" and "M"
capitalized (just as the Java class). Pronounce it any way you like.

3.2 Synergies within other projects

I hope that this program/library should be useful to other projects involved in IR signals.
It makes the vast knowledge of the JP1 project available to other programs. It can be used
off-line, to manually or automatically produce e.g. configuration files containing rendered
IR signal in some popular format, like the Pronto format. More exciting is to implement
a real time "IR engine", that can generate and transmit IR signals in any of the known
formats.

3.3 Copyright and License

The program, as well as this document, is copyright by myself. Of course, it is based
upon the IRP documentation, but is to be considered original work. The "database file"
IrpProtocols.ini is derived from DecodeIR.html, thus I do not claim copyright.

The program uses, or interfaces with (the different is slightly blurred), other projects.
ExchangeIR was written by Graham Dixon and published under GPL3 license. Its
Analyze-function has been translated to Java by myself, and is used in by the present
program. DecodeIR was originally written by John S. Fine, with later contributions from
others. It is free software with undetermined license. IrpMaster depends on the runtime
functions of ANTLR3, which is free software with BSD type license.

The program and its documentation are licensed under the GNU General Public License
version 3, making everyone free to use, study, improve, etc., under certain conditions.

4 Main principles

4.1 Design principles

It is my opinion that it is better to get the functionality and the API right, before you do
a graphical user interface (GUI). It is much easier and logical to put a GUI on top of a
sane API, then to try to extract API functionality from a program that was never designed

http://forrest.apache.org/
http://forrest.apache.org/
IrScrutinizer.html
IrMaster.html
http://www.antlr.org/
http://www.antlr.org/license.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html

IrpMaster: a program and API for the generation of IR signals from IRP notation

Page 5Built with Apache Forrest
http://forrest.apache.org/

sanely but built around the GUI. (Look at WinZip for a good example of the latter. Or
almost any Windows program, commercial or freeware...)

I have tried to follow the IRP document as closely as possible, in particular with respect
to the grammar and the syntax. However, the Execution model of Chapter 14, turned out
not to be usable.

Performance consideration were given minimal priorities. As it stands, rendering a
single IR signal typically takes less than 1 ms, so this seems justified. Some debugging
statements are covered by functionally superfluous if-statements in order not to have to
evaluate arguments (to String() etc) not needed anyhow.

Everything that is a "time" is internally represented as a double precision number. Most
output formats however, are in some integer format. I here use the principle of sound
numerics, do all computations with "high precision" (i.e. double precision) as long as ever
possible, then transform to the lower precision form (i.e. integer formats) only in the final
step.

All "integer quantities" like expressions, are done in Java long format, 64 bits long,
amounting to 63 bits plus sign. Already the metanec-example would not work with Java
int's. The performance penalty over using int (32 bits) is believed to be neglectable.

Differently put, all parameters are limited to Java's long, and can thus be no larger than
2^63-1 = 9223372036854775807. A real-life protocol where this limit is exceeded is not
known to me.

Versions prior to 0.2.1 also limited the length of bitfields, also the concatenation of
bitfields, to 64. In version 0.2.1 this restriction has been removed, and arbitrary length
(concatenation of) bitfields are allowed, as long as the parameters are less than 2^63-1.
(Example: The concatenation of bitfields A:50,B:50 produces a concatenated bitfield
of length 100, which is accepted by IrpMaster 0.2.1, but rejected by prior versions.)
(Thanx to 3FG for pointing this out to me.)

I do not have the slightest interest in internationalization of the project in its present form
— it does not contain a user friendly interface anyhow.

4.2 Repetitions

Possibly the major difficulty in turning the IRP Specification into programming
code was how to make sense of the repetition concept. Most treatises on IR signals
(for example the Pronto format) considers an IR signal as an introduction sequence
(corresponding to pressing a button on a remote control once), followed by a repeating
signal, corresponding to holding down a repeating button. Any, but not both of these
may be empty. In a few relatively rare cases, there is also an ending sequence, send after
a repeating button has been released. Probably 99% of all IR signals fit into the intro/
repetition scheme, allowing ending sequence in addition should leave very few practically
used IR signals left. In "abstract" IRP notation, these are of the form A,(B)+,C with A, B,
and C being "bare irstreams".

http://forrest.apache.org/
http://forrest.apache.org/
http://www.hifi-remote.com/wiki/index.php?title=IRP_Notation#Execution_model

IrpMaster: a program and API for the generation of IR signals from IRP notation

Page 6Built with Apache Forrest
http://forrest.apache.org/

In contrast, the IRP notation in this concept reminds they syntax and semantics of regular
expressions: There may be any numbers, and they can even be hierarchical. There
certainly does not appear to be a consensus on how this very,... general ... notation should
be practically thought of as a generator of IR signals. The following, "finite-automaton
interpretation" may make sense: An IRP with several repetitions, say, A(B)+C(D)+E, can
be thought of as a remote control reacting on single and double presses. Pressing the key
and holding it down produces first A, then B's as long as the button is pressed. An action
such as shortly releasing the key and immediately pressing it again then sends one C, and
keeps sending D's as long as button is kept pressed. When released, E is sent. Similarly,
hierarchical repetitions (repetitions containing other repetitions) may be interpreted with
some secondary "key" being pressed and/or released while a "primary button" is being
held down — possibly like a shift/meta/control modifier key on a keyboard or a sustain/
wah-wah-pedal on a musical instrument?

The present program does not implement hierarchical repetitions. However, an unlimited
number of non-hierarchical repetitions are allowed, although not in the form if the class
IrSignal — it is restricted to having three parts (intro, repeat, ending). Also, the repetition
pattern (...)* is rejected, because it does not make sense as an IR signal.

The command line interpreter contains an "interactive mode", entered by the argument
--interactive. This way the intrinsic finite state machine (see above) inherent in an
IRP with repetitions can be interactively traversed, probably in the context of debugging.

5 Command line usage

5.1 Installing binaries

There is no separate binary distributions of IrpMaster. The user who do not want to
compile the sources should therefore install the binary distribution of IrScrutinizer, which
contains everything needed to run IrpMaster from the command line. Installing that
package, either the Windows installer or the ZIP file, will install a wrapper, which is the
preferred way to invoke IrpMaster.

5.2 Usage of the program from the command line

I will next describe how to invoke the program from the command line. Elementary
knowledge of command line usage is assumed.

There is a lot of functionality crammed in the command line interface. The usage message
of the program gives an extremely brief summary:

Usage: one of
 IrpMaster --help
 IrpMaster [--decodeir] [--analyze] [-c|--config <configfilename>] --version
 IrpMaster [OPTIONS] -n|--name <protocolname> [?]
 IrpMaster [OPTIONS] --dump <dumpfilename> [-n|--name <protocolname>]
 IrpMaster [OPTIONS] [--ccf] <CCF-SIGNAL>|<RAW-SEQUENCE>

http://forrest.apache.org/
http://forrest.apache.org/
http://www.harctoolbox.org/downloads/IrScrutinizer.exe
http://www.harctoolbox.org/downloads/IrScrutinizer-bin.zip

IrpMaster: a program and API for the generation of IR signals from IRP notation

Page 7Built with Apache Forrest
http://forrest.apache.org/

 IrpMaster [OPTIONS] [--ccf] "<INTRO-SEQUENCE>" ["<REPEAT-SEQUENCE>" ["<ENDING-
SQUENCE>"]]
 IrpMaster [OPTIONS] [-n|--name] <protocolname> [PARAMETERASSIGNMENT]
 IrpMaster [OPTIONS] [-i|--irp] <IRP-Protocol> [PARAMETERASSIGNMENT]

where OPTIONS=--stringtree <filename>,--dot <dotfilename>,--xmlprotocol
 <xmlprotocolfilename>,
-c|--config <configfile>,-d|--debug <debugcode>|?,-s|--seed <seed>,-q|--quiet,
-P|--pass <intro|repeat|ending|all>,--interactive,--decodeir,--analyze,--lirc
 <lircfilename>,
-o|--outfile <outputfilename>, -x|--xml, -I|--ict, -r|--raw, -p|--pronto, -u|--uei,
--disregard-repeat-mins, -#|--repetitions <number_repetitions>.

Any filename can be given as `-', meaning stdin or stdout.
PARAMETERASSIGNMENT is one or more expressions like `name=value' (without spaces!).
One value without name defaults to `F`, two values defaults to `D` and `F`,
three values defaults to `D`, `S`, and `F`, four values to `D`, `S`, `F', and `T`, in
 the order given.

All integer values are nonnegative and can be given in base 10, 16 (prefix `0x'),
8 (leading 0), or 2 (prefix `0b' or `%'). They must be less or equal to 2^63-1 =
 9223372036854775807.

All parameter assignment, both with explicit name and without, can be given as
 intervals,
like `0..255' or '0:255', causing the program to generate all signals within the
 interval.
Also * can be used for parameter intervals, in which case min and max are taken from
the parameterspecs in the (extended) IRP notation.

Note that if using the wrapper previously described, it has already added the option --
config standard_confile to the command line.

We will next explain this very brief description somewhat more verbosely:

• The first version simply produces the help message, as per above.
• The second version will will print the versions of the program, and optionally, the

version of the configuration file and the DecodeIR dynamic library. The --version
argument should normally be given last, since it is executed immediately when the
command line is parsed.

• The third version prints the IRP string of the protocol with the given name to the
terminal.

• In the forth version, a CCF string (or, alternatively, a string in raw format (with
leading "+"), or in UEI learned format) is read in, and, depending on the to the other
options invoked, translated to another format, or sent to DecodeIR and/or AnalyzeIR.

• The fifth version differs form the forth version in that an intro-, and optionally a
repeat-, and an ending sequence are explicitly given in raw format, each as a separate
argument. In most shells, this means that they have to be enclose within quotes.

• The sixth version dumps either the whole IRP data base, or just the protocol given
as argument, to the file name used as the argument to the --dump option (use - for
standard output).

• The sixth version uses the name of an IRP protocol (using the -n or --name option),
to be found in the data base/configuration file specified by the -c or --config

http://forrest.apache.org/
http://forrest.apache.org/

IrpMaster: a program and API for the generation of IR signals from IRP notation

Page 8Built with Apache Forrest
http://forrest.apache.org/

option, that protocol is used to render an IR signal or sequence using the supplied
parameters (more on that later).

• Finally, the last version allows the user to enter an explicit IRP string using the -i or
--irp-option, to be used to render the signal according to the parameters given.

In the simplest and most general form, parameter assignments are made on the command
line in one argument of the type name=value. On both sides of the "="-signs, there
should not be any spaces. (More precisely, it is required that all assignments are made
within a single "argument" to the program, which is determined by the command line
interpreter. Thus writing the arguments within single or double quotes, extra spaces can
be parsed.) After named parameters are given (possibly none), up to four "standard"
parameters can be given. These are, in order D, S, F, and T (which per convention in
the JP1 community stands for "Device", "Subdevice", "Function" (also called OBC or
command number), and "Toggle"). If using -1 as the value, that parameter is considered
as not being assigned. One value without name defaults to `F', two values defaults to `D'
and `F', three values defaults to `D', `S', and `F', and four to `D', `S', `F', and `T', in the
order given. For example,

E=12 34 -1 56 1

assigns the value 12 to E, the value 34 to D, the value of 56 to F, and 1 to T, while S is
not assigned anything at all. Parameters can be given not only in decimal notation, but
also as hexadecimal (using prefix 0x) binary (using prefix 0b or %), or octal (using prefix
0).

If the command line cannot be parsed the usage message will be printed. If you are unsure
of exactly what is wrong, consider issuing "-d 1" (the debug option with argument
1) as the first argument on the command line, which may produce more verbose error
messages.

Using the -r or --raw option, the output is given in "raw form" (in JP1-Forum jargon,
this is a sequence of positive numbers (indicating "flashes", or on-times in micro seconds)
and negative numbers (indicating "gaps" or off-times, where the absolute value indicates
the duration in micro seconds. Carrier frequency is specified separately). Alternatively,
or additionally, using the -p or --pronto option, output is produced in the so-
called Pronto format, see e.g. this document. This format is popular in several IR using
Internet communities, like Promixis (known for their (commercial) products Girder and
NetRemote), as well as EventGhost. Optionally, these can be wrapped into an XML
skeleton, offering an ideal platform for translating to every other IR format this planet has
encountered. If desired, the output of the program is directed to a particular named file
using the -o filename or --output filename option. (There is also a possibility
(using the --ict or -I option) to generate output files in IRScope's ict-format, but I am
not sure this was as wise design decision: it may be a better idea to generate additional
formats by post-processing the XML file.)

http://forrest.apache.org/
http://forrest.apache.org/
http://www.hifi-remote.com/wiki/index.php?title=Working_With_Pronto_Hex
http://www.promixis.com
http://www.eventghost.net
http://www.hifi-remote.com/wiki/index.php?title=IR_Scope_and_IR_Widget_User%27s_Guide

IrpMaster: a program and API for the generation of IR signals from IRP notation

Page 9Built with Apache Forrest
http://forrest.apache.org/

5.2.1 Preventing intro sequence in repeat sequence

Motivated by this thread in the JP1 forum, I have been thinking over the "correct" way
to render signals of this type ... (...)+. This is a real issue, to determine the correct
behavior when e.g. a program is sent the instruction "send the signal one time", and not
an academic question like "keypress shorter than 6ms" or de-bouncing circuitry.

The Pronto notation is normally described as "intro part exactly once, repetition part
if and as long as the button is held down". I.e., zero or more times. Therfore, IMHO,
the IRP I (R)+ should properly be rendered as having intro sequence I R, which
is what IrpMaster normally does. However, in a sense, this can be considered as ugly,
awkward, and redundant. If I recall properly, there is a flag in the LIRC configuration
called something like "send_repeat_least_once", which should be exactly what we need.

The option called --disregard-repeat-mins will make IrpMaster render the intro
sequence without repetition part, also in the ... (...)+ case.

5.3 Iterating over input parameter ranges

Either for generating configuration files for other programs, or for testing, there is a very
advanced feature for looping over input parameter sets. For all of the parameters to a
protocol, instead of a single value, a set can be given. The program then computes all IR
signals/sequences belonging to the Cartesian product of the input parameter sets. There
are five types of parameter sets:
1. Of course, there is the singleton set, just consisting of one value
2. There is also a possibility to give some arbitrary values, separated by commas.

Actually, the commas even separate sets, in the sense of the current paragraph.
3. An interval, optionally with a stride different from 1, can be given, either as

min..max++increment or min:max++increment, or alternatively, simply as
*, which will get the min and max values from the parameter's parameter specs.

4. Also, a set can be given as a:b<<c, which has the following semantics: starting with
a, this is shifted to the left by c bits, until b has been exceeded (reminding of the left-
shift operator << found in languages such as C).

5. Finally, a:b#c generates c pseudo random numbers between a and b (inclusive).
The "pseudo random" numbers are completely deterministically determined from the
seed, optionally given with the --seed option. As of version 0.2.2 a and b> are
optional. If left out, the values are taken as from the protocol parameters min and max
respectively, just as with the * form.

See the test file test.sh (include in the distributions) for some examples. Of course,
using the command line, some of the involved characters, most notably the *, has a
meaning to the command line interpreter and may need "escaping" by a backslash
character, or double or single quotes.

There is also an option, denoted -# or --repetitions taking an integer argument,
that will compute that many "copies" of the IR signal or sequence. This may be of interest

http://forrest.apache.org/
http://forrest.apache.org/
http://www.hifi-remote.com/forums/viewtopic.php?t=13923
http://en.wikipedia.org/wiki/Cartesian_product

IrpMaster: a program and API for the generation of IR signals from IRP notation

Page 10Built with Apache Forrest
http://forrest.apache.org/

for signals that are non-constant (toggles being the simplest example) or for profiling the
program.

5.4 Debugging possibilities

There are a number of different debug parameters available. Use -d or --debug with
"?" as argument for a listing:

$ java -jar IrpMaster.jar --debug ?
Debug options: Main=1, Configfile=2, IrpParser=4, ASTParser=8, NameEngine=16,
 BitFields=32, Parameters=64, Expressions=128,
IrSignals=256, IrStreamItems=512, BitSpec=1024, DecodeIR=2048, IrStreams=4096,
BitStream=8192, Evaluate=16384

For every debug option, there is an integer of the form 2^n associated with it. Just add
the desired numbers together and use as argument for the -d or --debug command.
There are also commands for debugging the parsed version of the IRP: Notably the --
stringtree filename option (produces a LISP-like parsed representation of the so-
called AST (abstract syntax tree)). --dotfilename produces a dot-file, that can be
translated by the open-source program dot contained in the Graphviz project, producing
a nice picture (e.g. in any common bitmap format) of the current IRP protocol, and --
xmlprotocol filename producing an XML representation. It may be possible
in the future to use any of these representations to e.g., write a C code generator for a
particular protocol.

Some of the classes contain their own main methods (for those not familiar with the Java
jargon: these can be called as programs on their own) allowing for both debugging and
pedagogical exploration, together possibly with other possibilities. In particular, this goes
for the Expression class, One day I am going to document this...

java -classpath IrpMaster.jar org.harctoolbox.IrpMaster.Expression -d 'a + b
 *c**#d' {a=12,b=34,c=56,d=4}
(+ a (* b (** c (BITCOUNT d))))
1916

5.5 Third-party Java archives (jars)

For the DecodeIR-integration, IrpMaster requires a small support package,
DecodeIR.jar, which is distributed together with IrpMaster. It consists
of the compiled DecodeIRCaller.java from DecodeIR (full name
com.hifiremote.decodeir.DecodeIRCaller.class), and
com.hifiremote.LibraryLoader.class from RemoteMaster, which is also
free software. To get rid of some (in this context) annoying messages, it was necessary
to create a (very) lightly modified version, which can be found on the download page.
IrpMaster also requires the runtime libraries of the parser generator ANTLR, which is
also free software but licensed under a BSD-License. I distribute the whole (binary)
package antlr-3.4-complete.jar. (No usable "runtime version" is known to me.)

http://forrest.apache.org/
http://forrest.apache.org/
http://www.graphviz.org
http://www.antlr.org
http://www.antlr.org/license.html

IrpMaster: a program and API for the generation of IR signals from IRP notation

Page 11Built with Apache Forrest
http://forrest.apache.org/

6 Extensions to, and deviation from, IRP semantic and syntax

6.1 Parameter Specifications

In the first, now obsolete, version of the IRP notation the parameters of a protocol had
to be declared with the allowed max- and min-value. This is not present in the current
specification. I have reinvented this, using the name parameter_spec. For example, the
well known NEC1 protocol, the Parameter Spec reads: [D:0..255,S:0..255=255-
D,F:0..255]. (D, S, and F have the semantics of device, sub-device, and function
or command number.) This defines the three variables D, S, and F, having the allowed
domain the integers between 0 and 255. D and F must be given, however, S has a default
value that is used if the user does not supply a value. The software requires that the values
without default values are actually given, and within the stated limits. If, and only if, the
parameter specs is incomplete, there may occur run-time errors concerning not assigned
values. It is the duty of the IRP author to ensure that all variables that are referenced
within the main body of the IRP are defined either within the parameter specs, defined
with "definitions" (Chapter 10 of the specification), or assigned in assignments before
usage, otherwise a run-time error will occur (technically an UnassignedException
will be thrown).

The preferred ordering of the parameters is: D, S (if present), F, T (if present), then the
rest in alphabetical order,

The formal syntax is as follows, where the meaning of the '@' will be explained in the
following section:

parameter_specs:
 '[' parameter_spec (',' parameter_spec)* ']' | '[' ']'

parameter_spec:
 name ':' number '.' '.' h=number ('=' i=bare_expression)?
 | name '@' ':' number '.' '.' number '=' bare_expression

6.2 The GeneralSpec

For the implementation, I allow the four parts (three in the original specification) to be
given in any order, if at all, but I do not disallow multiple occurrences — it is quite hard
to implement cleanly and simply not worth it. (For example, ANTLR does not implement
exclusions. The only language/grammar I know with that property is SGML, which is
probably one of the reasons why it was considered so difficult (in comparison to XML) to
write a complete parser.)

6.2.1 Persistency of variables

Graham, in the specification and in following forum contributions, appears to consider
all variables in a IRP description as intrinsically persistent: They do not need explicit
initialization, if they are not, they are initialized to an undefined, random value. This may

http://forrest.apache.org/
http://forrest.apache.org/
http://www.hifi-remote.com/wiki/index.php?title=IRP_Notation
http://www.hifi-remote.com/wiki/index.php?title=IRP_Notation

IrpMaster: a program and API for the generation of IR signals from IRP notation

Page 12Built with Apache Forrest
http://forrest.apache.org/

be a reasonable model for a particular physical remote control, however, from a scientific
standpoint it is less attractive. I have a way of denoting a variable, typically a toggle of
some sort, as persistent by appending an "@" to its name in the parameter specs. An
initial value (with syntax as default value) is here mandatory. It is set to its initial value
by the constructor of the Protocol class. Calling the renderIrSignal(...) function or such
of the Protocol instance typically updates the value (as given in an assignment, a 0-1
toggle goes like T=1-T). As opposed to variables that has not been declared as persistent,
it (normally) retains its value between the invocations of renderIrSignal(...). A toggle is
typically declared as [T@:0..1=0] in the parameter specs.

6.2.2 Comments and line breaks

Comments in the C syntax (starting with /* and ended by */) are allowed and ignored.
Line breaks can be embedded within an IRP string by "escaping" the line break by a
backslash

6.2.3 Data types

The IRP documentation clearly states that the carrier frequency is a real number, while
everything else is integers. Unfortunately, users of the IRP notation, for example in
the DecodeIR.html document, has freely used decimal, non-integer numbers. I have
implemented the following convention: Everything that has a unit (second or Hz),
durations and frequency, are real numbers (in the code double precision numbers).

6.2.4 Extents

The specification writes ``An extent has a scope which consists of a consecutive range
of items that immediately precede the extent in the order of transmission in the signal. ...
The precise scope of an extent has to be defined in the context in which it is used.'', and, to
my best knowledge, nothing more. I consider it as specification hole. I have, starting with
IrpMaster 0.2.2, implemented the following: Every extend encountered resets the duration
count.

6.2.5 Multiple definitions allowed

It turned out that the preprocessing/inheritance concept necessitated allowing several
definition objects. These are simply evaluated in the order they are encountered, possibly
overwriting previous content.

6.2.6 Names

Previous programs (makehex, makelearned) have only allowed one-letter names.
However, in DecodeIR.html there are some multi-letter names. The IRP documentation
allows multi-letter names, using only capital letters. I have, admittedly somewhat

http://forrest.apache.org/
http://forrest.apache.org/
http://www.hifi-remote.com/wiki/index.php?title=DecodeIR
http://www.hifi-remote.com/wiki/index.php?title=DecodeIR

IrpMaster: a program and API for the generation of IR signals from IRP notation

Page 13Built with Apache Forrest
http://forrest.apache.org/

arbitrarily, extended it to the C-name syntax: Letters (both upper and lower cases) and
digits allowed, starting with letter. Underscore "_" counts as letter. Case is significant.

Also there are a few predefined, read-only variables, mainly for debugging, although
a practical use is not excluded. To distinguish from the normal, and not to cause name
collision, they start by a dollar sign. Presently, these are: $count (numbers the call
to a render*-()-function, after the constructor has been called), $pass(Requested
pass in a --pass-argument, (or from API call), not to be confused with the following),
$state (current state (intro=0, repeat=1, ending=2,...) of parsing of an IRP),
$final_state (undefined until the final state has been reached, then the number of
the final state). For example, the OrtekMCE example {...}<...>([P=0][P=1]
[P=2],4,-1,D:5,P:2,F:6,C:4,-48m)+[...] could be written with $state
as (4,-1,D:5,$state:2,F:6,C:4,-48m)+ (disregarding last frame).

6.2.7 GeneralSpecs, duty cycle

Without any very good reason, I allow a duty cycle in percent to be given within the
GeneralSpec, for example as {37k,123,msb,33%}. It is currently not used for
anything, but preserved through the processing and can be retrieved using API-functions.
If some, possibly future, hardware needs it, it is there.

6.2.8 Namespaces

There is a difference in between the IRP documentation and the implementation of the
Makehex program, in that the former has one name space for both assignments and
definitions, while the latter has two different name spaces. IrpMaster has one name space,
as in the documentation. (This is implemented with the NameEngine class.)

6.2.9 Shift operators (not currently implemented)

It has sometimes been suggested (see this thread) to introduce the shift operators "<<" and
">>" with syntax and semantics as in C. This far, I have not done so, but I estimate that
it would be a very simple addition. (The reader might like to have a look at my example,
which possibly would have been more naturally expressed with left shifts than with
multiplication with powers of two.)

6.2.10 Logical operators (also not implemented)

In particular in the light of current discussion on the F12 protocol, in my opinion more
useful would be the logical operators &&, ||, and ?:, having their short circuiting
semantics, like in languages such as C, Perl,..., but unless, e.g. Pascal. Recall, the
expression A && B is evaluated as follows: First A is checked for being 0 or not. If 0,
then 0 is returned, without even evaluating B. If however, A is nonzero, B is evaluated,
possibly to a "funny" type and is returned. The F12 protocol (cf. the latest version 2.43
of DecodeIR.html) could then probably be written like <...>(introsequence,

http://forrest.apache.org/
http://forrest.apache.org/
http://www.hifi-remote.com/forums/viewtopic.php?t=11850
http://www.hifi-remote.com/forums/viewtopic.php?t=13374&start=17

IrpMaster: a program and API for the generation of IR signals from IRP notation

Page 14Built with Apache Forrest
http://forrest.apache.org/

(H && repetitionsequence*)) or <...>(H ? longsequence+ :
shortsequence).

6.2.11 BitCount Function

Generally, I think you should be very reluctant to add "nice features" to something like
IRP. However, in the applications in DecodeIR.html, the phrase "number of ones",
often modulo 2 ("parity"), occurs frequently in the more complicated protocols. This is
awkward and error prone to implement using expressions, for example: F:1 + F:1:1
+ F:1:2 + F:1:3 + F:1:4 + F:1:5 + F:1:6 + F:1:7. Instead, I have
introduced the BitCount function, denoted by "#". Thus, odd parity of F will be #F%1,
even parity 1-#F%2. It is implemented by translating to the Java Long.bitCount-function.

6.3 Preprocessing and inheritance

Reading through the protocols in DecodeIR.html, the reader is struck by the observation
that there are a few general abstract "families", and many concrete protocol are "special
cases". For example all the variants of the NEC* protocols, the Kaseikyo-protocols, or
the rc6-families. Would it not be elegant, theoretically as well as practically, to be able to
express this, for example as a kind of inheritance, or sub-classing?

For a problem like this, it is easily suggested to invoke a general purpose macro
preprocessor, like the C preprocessor or m4. I have successfully resisted that temptation,
and am instead offering the following solution: If the IRP notation does not start with
"{" (as they all have to do to confirm with the specification), the string up until the first
"{" is taken as an "ancestor protocol", that has hopefully been defined at some other place
in the configuration file. Its name is replaced by its IRP string, with a possible parameter
spec removed — parameter specs are not sensible to inherit. The process is then repeated
up until, currently, 5 times.

The preprocessing takes place in the class IrpMaster, in its role as data base manager for
IRP protocols.

6.3.1 Example

This shows excepts from a virtual configuration file. Let us define the "abstract" protocol
metanec by

[protocol]
name=metanec
irp={38.4k,564}<1,-1|1,-3>(16,-8,A:32,1,-78,(16,-4,1,-173)*)[A:0..4294967295]

having an unspecified 32 bit payload, to be subdivided by its "inherited protocols". Now
we can define, for example, the NEC1 protocol as

[protocol]
name=NEC1

http://forrest.apache.org/
http://forrest.apache.org/
http://download.oracle.com/javase/6/docs/api/java/lang/Long.html#bitCount%28long%29
http://en.wikipedia.org/wiki/C_preprocessor
http://en.wikipedia.org/wiki/M4_%28computer_language%29

IrpMaster: a program and API for the generation of IR signals from IRP notation

Page 15Built with Apache Forrest
http://forrest.apache.org/

irp=metanec{A = D | 2**8*S | 2**16*F | 2**24*(~F:8)}[D:0..255,S:0..255=255-D,F:0..255]

As can be seen, this definition does nothing else than to stuff the unstructured payload
with D, S, and F, and to supply a corresponding parameter spec. The IrpMaster class
replaces "metanec" by {38.4k,564}<1,-1|1,-3>(16,-8,A:32,1,-78,
(16,-4,1,-173)*)" (note that the parameter spec was stripped), resulting in an IRP
string corresponding to the familiar NEC1 protocol. Also, the "Apple protocol" can now
be formulated as

[protocol]
name=Apple
irp=metanec{A=D | 2**8*S | 2**16*C:1 | 2**17*F | 2**24*PairID} \
{C=1-(#F+#PairID)%2,S=135} \
[D:0..255=238,F:0..127,PairID:0..255]

The design is not cast in iron, and I am open to suggestions for improvements. For
example, it seems reasonable that protocols that only differ in carrier frequency should be
possible to express in a concise manner.

6.4 The Configuration file/IRP protocol database

There is presently not a "official" IRP database. MakeHex comes with a number of
protocol files with the .irp-extension, but that is another, obsolete and much less
powerful format. MakeLeaned also comes with a number of "irp-files", in the new format,
but incomplete. The DecodeIR.html-file presently comes closest: it has a number (upper
two-digit) of IRPs, however, often not even syntactically confirming to the specification,
and often with the description of the protocol at least partially in prose ("C is the number
of ..."), parseable only by humans, not by programs.

Possibly as an intermediate solution, I invented the IrpProtocols.ini file. This file
has a format similar to ini-files under Windows. For every protocol, it contains name and
an IRP-string, possibly also a documentation string. The latter can, in principle, contain
HTML elements, i.e. it can be an HTML fragment.

6.5 Syntax and semantics of the IrpProtocols.ini file

Every protocol is described in a section starting with the key [protocol]. Then there
are a few keywords describing different properties:

• name The name of the protocol. This is folded to lowercase for searches and
comparisons.

• irp The IRP string representation. This may continue over several lines if the line
feeds are escaped by a backslash ("\"), i.e. having the backspace as last character on
the line.

Other keywords are allowed, but ignored. Then, optionally, there may be a section
[documentation], that, in principle, could contain e.g. an HTML-fragment. The
documentation section continues until the next [protocol] is encountered.

http://forrest.apache.org/
http://forrest.apache.org/

IrpMaster: a program and API for the generation of IR signals from IRP notation

Page 16Built with Apache Forrest
http://forrest.apache.org/

6.6 Requirements for an IRP data base

I have created the present IrpProtocols.ini by hand editing the DecodeIR.html-
file. I would welcome if the community can settle for one endorsed format for such a data
base. It can be one file, or many files: One file per protocol is easier for the developer, in
particular if several developers are using a version management system (with or without
file locking), but less convenient for the user.

It would be highly desirable in the future to be able just to maintain one file (or set of
files). Some possibilities for this are:
1. Have one master file, for example in XML format, that after preprocessing generates

both DecodeIR.html, and a protocol description file. There is also the possibility of
having a program like IrpMaster parsing the master file directly.

2. Extend protocol.ini("belonging to RemoteMaster") with the IRP information.
Leaves the problem of duplicated "documentation" between DecodeIR.html and
protocols.ini.

3. Formalizing the IRP-Strings within DecodeIR.html, e.g. by using div or span
elements with class-attributes, (and formatting with, for example, better CSS style
sheets) so that the IRP information can be unambiguously read out.

6.7 Integration with DecodeIR

Optionally (when installed and selected with the --decodeir option) the computed IR
signal is sent to DecodeIR, to check DecodeIR's opinion on the nature of the signal. This
gives a magnificent possibility for automated tests, not only of the present program, but
also of DecodeIR. Note in particular that there are very advance possibilities for testing
not only a single signal, but for testing whole ranges of signals, a list of signals, "random"
inputs, equidistant inputs, or inputs achieved by shifting, see the section on parameter
iterating.

The shared library is sought first in architecture dependent sub-directories, like in
RemoteMaster, .\windows on Windows, ./Linux-amd64 and ./Linux-i386 on
64- and 32-bit Linux respectively, etc, then in system libraries, for example given on the
command line to the Java VM, using the -Djava.library.path= option.

There is some fairly hairy programming in DecodeIR.java for identifying some
different cases.

The enclosed script test.sh runs under a Unix/Linux shell such as bash or sh. It
should also run within Cygwin on Windows. It does not run with the standard Windows
command line interpreter. Note that it might need some adjustment of file paths etc.

Possibly because I did not find any more logical way to dispose it, the current distribution
contains a class (with main()-method) named EvaluateLog that can be used to evaluate
the output of the above script. Use like

java -classpath IrpMaster.jar IrpMaster/EvaluateLog protocols.log

http://forrest.apache.org/
http://forrest.apache.org/
http://www.cygwin.com/

IrpMaster: a program and API for the generation of IR signals from IRP notation

Page 17Built with Apache Forrest
http://forrest.apache.org/

7 The API

The Java programmer can access the functionality through a number of API functions.

The class IrpMaster is the data base manager. The class is immutable, constructed
from a file name (or an InputStream), and can deliver assorted pieces of information
from the data base. Most interesting is the newProtocol()-function that generates a
Protocol-object from parsing the IRP-string associated with the requested protocol name.
It contains a very elaborate main()-function for command line use -- strictly speaking
this is "the program" that is described herein. Actually, that main()-function does not
necessarily belong to the IrpMaster class, but could be located somewhere else.

Instances of the Protocol class are constructed (essentially) from a String, containing the
IRP representation to be parsed. Once constructed (and IRP-String parsed), the Protocol
instances can render IrSignals and IrSequences for many different parameter values. This
is done with the render(...) and renderIrSignal(...) functions, producing
IrSequences and IrSignals respectively:

An IrSequence is a sequence of pulse pairs. It does not know weather it is supposed
to repeat or not. In contrast, an IrSignal has one introductory IrSequence, one
repetition IrSequence (either, but not both, of these can be empty), and an (in most
cases empty) ending IrSequence.

The API is documented in standard Javadoc style, which can be installed from the source
package, just like any other Java package. For the convenience of the reader, the Javadoc
API documentation is also available here.

7.1 Example of API usage

The task is to write a command line program, taking, in order, the configuration file
name, a protocol name, a device number and a function/command/obc number, and send
the corresponding IR signal to a GlobalCaché GC-100-06 networked IR-transmitter,
having IP address 192.168.1.70, using its IR Port 1. For this, we use the GlobalCaché
functionality of the HarcHardware, which is also GPL-software written by myself. This
task is solved with essentially just a few lines of code.

8 References

1. IrScrutinizer. A program, also by myself, than, among other things, provides a user
friendly GUI for IrpMaster.

2. IrMaster. A program, also by myself, than, among other things, provides a user
friendly GUI for IrpMaster.

3. Specification of IRP Notation, Graham Dixon. Also in PDF version for download. A
very thorough specification.

4. Discussion thread on the IRP documentation
5. DecodeIR.html. (The link points to a slightly nicer formatted wiki page, though).

Contained within the current distribution of DecodeIR. Subversion repository.

http://forrest.apache.org/
http://forrest.apache.org/
apidocs/index.html?org/harctoolbox/IrpMaster/package-summary.html
http://www.globalcache.com/products/gc-100/models1/
http://www.harctoolbox.org/HarcHardware.html
IRPMasterAPIExample.java
IrScrutinizer.html
IrMaster.html
http://www.hifi-remote.com/wiki/index.php?title=IRP_Notation
http://www.hifi-remote.com/forums/dload.php?action=file&file_id=7926
http://www.hifi-remote.com/forums/viewtopic.php?t=11850
http://www.hifi-remote.com/wiki/index.php?title=DecodeIR
http://www.hifi-remote.com/forums/dload.php?action=file&file_id=13104
https://sourceforge.net/p/controlremote/code/HEAD/tree/trunk/decodeir/

IrpMaster: a program and API for the generation of IR signals from IRP notation

Page 18Built with Apache Forrest
http://forrest.apache.org/

6. Makehex. Source, binary. A functional predecessor of the present program. Operates
on a predecessor of the current version of the IRP. Written in C++, also available as
DLL (within the first link). Java translation by myself.

7. MakeLeaned. Windows, binary only, source unavailable. GUI only, no API. Not
maintained since 2005. Almost certainly incomplete with respect to current IRP
specification. Discussion thread in JP1-Forum.

http://forrest.apache.org/
http://forrest.apache.org/
http://www.hifi-remote.com/forums/dload.php?action=file&file_id=8501
http://www.hifi-remote.com/forums/dload.php?action=file&file_id=5209
https://sourceforge.net/p/controlremote/code/HEAD/tree/trunk/makehex/src/com/hifiremote/makehex/Makehex.java
http://www.hifi-remote.com/sony/MakeLearned_b1.zip
http://www.hifi-remote.com/forums/viewtopic.php?t=5444

	Table of contents
	1 Revision history
	2 Revision notes
	3 Introduction
	3.1 Spelling, pronunciation
	3.2 Synergies within other projects
	3.3 Copyright and License

	4 Main principles
	4.1 Design principles
	4.2 Repetitions

	5 Command line usage
	5.1 Installing binaries
	5.2 Usage of the program from the command line
	5.2.1 Preventing intro sequence in repeat sequence

	5.3 Iterating over input parameter ranges
	5.4 Debugging possibilities
	5.5 Third-party Java archives (jars)

	6 Extensions to, and deviation from, IRP semantic and syntax
	6.1 Parameter Specifications
	6.2 The GeneralSpec
	6.2.1 Persistency of variables
	6.2.2 Comments and line breaks
	6.2.3 Data types
	6.2.4 Extents
	6.2.5 Multiple definitions allowed
	6.2.6 Names
	6.2.7 GeneralSpecs, duty cycle
	6.2.8 Namespaces
	6.2.9 Shift operators (not currently implemented)
	6.2.10 Logical operators (also not implemented)
	6.2.11 BitCount Function

	6.3 Preprocessing and inheritance
	6.3.1 Example

	6.4 The Configuration file/IRP protocol database
	6.5 Syntax and semantics of the IrpProtocols.ini file
	6.6 Requirements for an IRP data base
	6.7 Integration with DecodeIR

	7 The API
	7.1 Example of API usage

	8 References

